

Mark Scheme (Results)

November 2024

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2024
Question Paper Log Number P75946A
Publications Code 4CH1_1C_2411_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks
1 (a)		from liquid to solid freezing		3
		from gas to liquid condensing	ALLOW condensation	
		from solid to gas sublimation	ALLOW subliming	
(b) ((i)	6 circles similar size randomly arranged none touching	At least one circle in top/bottom of box	1
((ii)	A (the atoms move randomly in the gas state)		1
		B is not correct since atoms do not move randomly in the solid state		
		C is not correct since atoms are not in a fixed position in the gas state		
		D is not correct since atoms are not in a fixed position in the liquid state		
(c)		$H_2O(I) \rightarrow H_2O(s)$	ALLOW upper case/lower case	1
			Total = 6	

Question number			Answer	Notes	Marks
2	(a)	(i)	oxygen	ALLOW O ₂	1
		(ii)	nitrogen	ALLOW N ₂	1
		(iii)	chlorine	ALLOW Cl ₂	1
	(b)		M1 (hydrogen chloride) has (atoms of) two / different elements M2 (chemically) bonded/joined / (chemically) combined together	ALLOW two different atoms	2
	(c)		D (chlorine has the strongest forces of attraction between its molecules) A is not the correct answer because covalent bonds are not broken when chlorine boils B is not the correct answer because covalent bonds do not occur between molecules C is not the correct answer because chlorine does not have ionic bonds		1
				Total = 6	

Question number	Answer	Notes	Marks
3 (a) (i)	M1 oxygen	ALLOW air ALLOW O ₂	2
	M2 water	ALLOW moisture ALLOW H ₂ O	
(ii)	(hydrated) iron (III) oxide	ALLOW ferric oxide ALLOW Fe ₂ O ₃	1
(b) (i)	M1 paint acts as a barrier / (protective) layer OWTTE	NOT galvanising NOT coating/covering	2
	M2 which prevents water/oxygen/air getting to the iron/reacting with iron		
(ii)	galvanising	ALLOW sacrificial protection	1
(iii)	M1 zinc is more reactive than iron OR zinc has a greater tendency to lose electrons	ALLOW zinc reacts instead of iron NOT zinc reacts more rapidly/faster	2
	M2 zinc oxidises / forms zinc oxide/reacts before iron	REJECT references to zinc rusting REJECT zinc reacts with iron	
		Total = 8	

Question	Answer	Notes	Marks
number 4 (a)	M1 draw a line in pencil (just above the bottom of	1,000	5
	the paper)		
	M2 put a spot of each ink on the line (before contact with solvent)		
	M3 pour some solvent in the beaker	ALLOW water for solvent	
	M4 place the paper in the beaker so the spots are above the solvent		
	M5 leave until the solvent has risen up the paper (nearly to the top)	ALLOW water for solvent	
		ALL marks can be scored/supported from a labelled diagram	
(b) (i)	M1 E		2
	M2 because it stayed on the start line/did not travel up paper	ALLOW didn't move/ Rf value =0 M2 dep on M1	
(ii)	M1 A and C		2
	M2 because they both (have a spot) at the same height OWTTE	ALLOW travelled same distance/same Rf value M2 dep on M1	
(iii)	M1 measure the distance from the start line to the spot and the distance from the start line to the solvent front		2
	M2 distance moved by the spot ÷ distance moved by the solvent	M2 subsumes M1	
		Allow 2 marks for a correct calculation method	
		Total = 11	

Question number	Answer	Notes	Marks
5 (a)	oxygen relights a glowing splint		1
(b)	M1 a catalyst provides an alternative pathway	ALLOW alternative route	2
	M2 of lower activation energy		
(c) (i)	A (conical) flask		2
	B (gas) syringe		
(ii)	M1 line from 4 minutes to the curved line		2
	M2 38cm ³	ALLOW values 37-39cm ³	
(iii)	M1 tangent drawn to the graph at 8 minutes touches curve once only		4
	M2 measurements made from \triangle	ALLOW ecf for tangent drawn at other than 8 minutes	
	M3 use measurements to calculate rate (y2-y1/x2-x1)(1sf or more)		
	M4 cm ³ /minute	ALLOW cm ³ /min ALLOW cm ³ min ⁻¹ ALLOW cm ³ /s ALLOW cm ³ s ⁻¹	
	If NO tangent drawn or drawn incorrectly(M1 not		
	awarded) then M3 awarded for 58-60/8 or 480 calculated correctly OR numbers from a calculated correctly		
	AND M4 for cm ³ /minutes	ALLOW cm ³ /min ALLOW cm ³ min ⁻¹ ALLOW cm ³ /s ALLOW cm ³ s ⁻¹	
		Total = 11	

Question number	Answer	Notes	Marks
6 (a) (i)	AICI ₃ ZnSO ₄ (NH ₄) ₃ N	ALLOW formula in reverse NOT molecular formula Penalise symbol letters/size of subscripts once only	3
(ii)	aluminium sulfate	ALLOW aluminium sulphate	1
(b)	M1 magnesium loses electrons M2 chlorine gains electrons	ALLOW magnesium gives/transfers electrons to chlorine for M1,M2 NOT chloride gains electrons	3
	M3 magnesium loses two electrons and two chlorines each gain one electron	M3 assumes M1,M2 ALLOW correct ionic equations	
(c) (i)	M1 two electrons between each nitrogen and hydrogen atom		2
(ii)	M2 two non-bonding electrons M1 (electrostatic) forces of attraction between shared pair(s) of electrons	M2 dep on M1	2
	M2 and the nuclei	REJECT nucleus (must be plural) REJECT intermolecular forces for both marks Total = 11	

Question number	Answer	Notes	Marks
7 (a) (i)	any one from:		1
	M1 to condense the water vapour	ALLOW condense steam/condense gas NOT cools water	
	M2 to ensure all the water collects in the tube (as a liquid)	NOT stops water evaporating	
(ii)	When the mass doesn't change / is constant/stops increasing	Accept: the last two results are the same Accept: balance reading stays the same	1
(b)	M1 add anhydrous/white copper(II) sulfate/sulphate	ALLOW anhydrous/white copper sulfate/sulphate ALLOW add anhydrous/blue cobalt chloride	2
	M2 which turns (from white to) blue	ALLOW which turns (from blue to) pink M2 dep on M1	
(c)	M1 (mass of water) = 6.3g	Ecf for incorrect mass of water	4
	M2 (moles of MgSO ₄) = 0.05	water	
	M3 (moles of H ₂ O) 0.35	M1 can be awarded from moles of H ₂ O in M3	
	M4 x=7		
		Answer of 7 on its own scores 4 marks	
		Total = 8	

Question number	Answer	Notes	Marks
8 (a)	carbon dioxide/a gas escapes/is lost/released (through the cotton wool)	NOT carbon dioxide/gas is given off/produced NOT wrong named gas	1
(b)	M1 the concentration (of hydrochloric acid) is highest	ALLOW there is a greater surface area of marble chips ALLOW greater amount of hydrochloric acid/reactants ALLOW more particles	2
	M2 so there are more collisions per unit time	ALLOW more frequent collisions REJECT references to greater (kinetic) energy for both marks	
(c)	the hydrochloric acid has been used up OWTTE	NOT acid is saturated IGNORE acid is a limiting factor	1
(d) (i)	any two from:	tunnenng rudeto.	2
	(same) mass of marble chips	ALLOW (same) amount of marble chips	
	(same) surface area of marble chips	ALLOW (same) size marble chips	
	(same) concentration of hydrochloric acid		3
	(same) volume of hydrochloric acid	NOT same amount of acid	
(ii)	M1 rate of reaction increases		
	M2 particles have more energy OR more particles have energy greater than (or equal to) the activation energy	ALLOW particles move faster	
	M3 so more successful collisions per unit time	ALLOW more frequent successful collisions	
		Total = 9	

	Questi numb		Answer	Notes	Marks
9	(a)	<u> </u>	aluminium is a better conductor (of heat) than glass (comparison needed)	REJECT insulation references	1
	(b)	(i)	carbon / soot/ C		1
		(ii)	incomplete combustion occurs OR the supply of oxygen/air is limited		1
	(c)	(i)	M1100×4.2×50		2
			M2 21000(J)	ALLOW ecf for M2 if answer close to 20000J	4
		(ii)	M1 21 kJ	ALLOW 20kJ	'
			M2 1.84÷46 OR 0.04 moles		
			M3 21÷0.04 OR 525 (kJ/mol)	ALLOW 21÷M2 ALLOW 500 (kJ/mol) if 20kJ used	
			M4 -525 (kJ/mol)	M4 is for the - sign. ALLOW ecf from M3	
	(d)	(i)	5O ₂	ALLOW multiples if the rest of the balancing numbers have been multiplied	1
		(ii)	M1 (M _r of butanol) 74		3
			M2 (moles of butanol) 3.7÷74 OR 0.05	ALLOW 3.7÷M1 if attempted Mr shown	
			M3 0.45 moles	ALLOW M2×9	
				Answer of 0.45 scores 3 Total = 13	

Question number		Answer	Notes	Marks
10 (a)	(i)	any one from:		1
		M1 ethane is saturated		
		M2 ethane has no double bonds		
		M3 ethane has single bonds only		
	(ii)	M1 products C₂H₅Br and HBr	In either order ALLOW balanced equations with a polysubstituted halogenoalkane	2
		M2 condition ultra violet radiation / ultra violet light/UV		
	(iii)	orange/yellow/brown to colourless/decolourises	NOT red/red-brown	1
(b)	(i)	any two from:		2
		M1 same functional group		
		M2 the same/similar chemical properties OR undergo same/similar chemical reactions	NOT similar reactivity	
		M3 trend in physical properties	ALLOW a named physical property e.g. boiling point NOT similar physical properties	
		M4 differ by CH ₂		
	(ii)	M1 same molecular formula	NOT same empirical/general formula	2
		M2 different displayed/structural formulae	ALLOW different structures/arrangements	
	(iii)	H 0-C-14 C=C-C-4	ALLOW E/trans isomer	1

	M1 chain length longer in poly(ethene)		
(c)			3
	M2 polymer contains only single (covalent) bonds		
	/no double bond	ALLOW monomer	
		contains double C=C	
		bonds	
		ALLOW reactant/ethene	
		unsaturated	
		ALLOW	
		product/polyethene	
		saturated	
	M3 ethene is a gas and poly(ethene) is a solid		
		Total = 12	

Question number	Answer	Notes	Marks
11 (a) (i)	2PbS + 3O ₂ → 2PbO + 2SO ₂		2
	M1 formulae of O ₂ and SO ₂		
	M2 rest of equation correctly balanced	M2 dep on M1 ALLOW multiples/fractions	
(ii)	(sulfur dioxide causes) acid rain / breathing problems	ALLOW named breathing problems such as asthma ALLOW other effects of acid rain such as killing fish, damage to stonework, killing plants	1
(iii)	M1 (moles lead(II) oxide) = 892 000 000 ÷ 223 OR 4 000 000 moles	ALLOW calculations done in megamoles throughout	3
	M2 (moles of carbon dioxide) = 2 000 000	ALLOW M1÷2	
	M3(mass of carbon dioxide) = 88 (tonnes)	88 (tonnes) scores 3 marks	
(iv)	any 5 from:		5
	lead(II) sulfide		
	M1 giant ionic structure/lattice	REJECT molecules/covalent bonds/ intermolecular forces for all three	
	M2 strong (ionic) bonds OR strong electrostatic forces (between oppositely charged) ions	marks	
	M3 which take a lot of energy to break / overcome	M3 dep on M2	
	sulfur dioxide	REJECT ions/ionic bonds for all 3 marks	
	M4 simple molecular/covalent structure	ALLOW molecules NOT particles/atoms	
	M5 weak intermolecular forces OR weak forces between molecules	NOT weak IMF between atoms	
	M6 which take little energy to overcome	M6 dep on M5	
(b)	M1 90.7÷207 and 9.30÷16	NOT atomic numbers	4
	M2 0.438 (moles of lead) and 0.581 (moles of	ALLOW 9.30÷32 for ecf	

oxygen)	Answer must be 2sf or more	
M3 ratio of moles = 1:1.33	ALLOW 1.3	
M4 empirical formula is Pb ₃ O ₄	ALLOW ecf from ratio shown to produce formula	
	Total = 15	